4,636 research outputs found

    A Quantum Theory of Optical Dispersion

    Full text link

    The maximum density droplet to lower density droplet transition in quantum dots

    Full text link
    We show that, Landau level mixing in two-dimensional quantum dot wave functions can be taken into account very effectively by multiplying the exact lowest Landau level wave functions by a Jastrow factor which is optimized by variance minimization. The comparison between exact diagonalization and fixed phase diffusion Monte Carlo results suggests that the phase of the many-body wave functions are not affected much by Landau level mixing. We apply these wave functions to study the transition from the maximum density droplet state (incipient integer quantum Hall state with angular momentum L=N(N-1)/2) to lower density droplet states (L>N(N-1)/2).Comment: 8 pages, 5 figures, accepted for publication in Phys. Rev.

    Langevin dynamics in crossed magnetic and electric fields: Hall and diamagnetic fluctuations

    Get PDF
    Based on the classical Langevin equation, we have re-visited the problem of orbital motion of a charged particle in two dimensions for a normal magnetic field crossed with or without an in-plane electric bias. We are led to two interesting fluctuation effects: First, we obtain not only a longitudinal "work-fluctuation" relation as expected for a barotropic type system, but also a transverse work-fluctuation relation perpendicular to the electric bias. This "Hall fluctuation" involves the product of the electric and the magnetic fields. And second, for the case of harmonic confinement without bias, the calculated probability density for the orbital magnetic moment gives non-zero even moments, not derivable as field derivatives of the classical free energy.Comment: 4 pages, 2 figures, revised versio

    The Exchange Gate in Solid State Spin Quantum Computation: The Applicability of the Heisenberg Model

    Full text link
    Solid state quantum computing proposals rely on adiabatic operations of the exchange gate among localized spins in nanostructures. We study corrections to the Heisenberg interaction between lateral semiconductor quantum dots in an external magnetic field. Using exact diagonalization we obtain the regime of validity of the adiabatic approximation. We also find qualitative corrections to the Heisenberg model at high magnetic fields and in looped arrays of spins. Looped geometries of localized spins generate flux dependent, multi-spin terms which go beyond the basic Heisenberg model.Comment: 13 pages, 8 figure

    Composite Fermions in Quantum Dots

    Full text link
    We demonstrate the formation of composite fermions in two-dimensional quantum dots under high magnetic fields. The composite fermion interpretation provides a simple way to understand several qualitative and quantitative features of the numerical results obtained earlier in exact diagonalization studies. In particular, the ground states are recognized as compactly filled quasi-Landau levels of composite fermions.Comment: Revtex. Postscript files of figures are appended the tex

    Real-Space Imaging of Alternate Localization and Extension of Quasi Two-Dimensional Electronic States at Graphite Surfaces in Magnetic Fields

    Full text link
    We measured the local density of states (LDOS) of a quasi two-dimensional (2D) electron system near point defects on a surface of highly oriented pyrolytic graphite (HOPG) with scanning tunneling microscopy and spectroscopy. Differential tunnel conductance images taken at very low temperatures and in high magnetic fields show a clear contrast between localized and extended spatial distributions of the LDOS at the valley and peak energies of the Landau level spectrum, respectively. The localized electronic state has a single circular distribution around the defects with a radius comparable to the magnetic length. The localized LDOS is in good agreement with a spatial distribution of a calculated wave function for a single electron in 2D in a Coulomb potential in magnetic fields.Comment: 4 pages, 4 figure

    Dynamical Diffraction Theory for Wave Packet Propagation in Deformed Crystals

    Full text link
    We develop a theory for the trajectory of an x ray in the presence of a crystal deformation. A set of equations of motion for an x-ray wave packet including the dynamical diffraction is derived, taking into account the Berry phase as a correction to geometrical optics. The trajectory of the wave packet has a shift of the center position due to a crystal deformation. Remarkably, in the vicinity of the Bragg condition, the shift is enhanced by a factor ω/Δω\omega /\Delta \omega (ω\omega: frequency of an x ray, Δω\Delta\omega: gap frequency induced by the Bragg reflection). Comparison with the conventional dynamical diffraction theory is also made.Comment: 4 pages, 2 figures. Title change

    Shifting RbR_b with AFBbA^b_{FB}

    Get PDF
    Precision measurements at the ZZ resonance agree well with the standard model. However, there is still a hint of a discrepancy, not so much in RbR_b by itself (which has received a great deal of attention in the past several years) but in the forward-backward asymmetry AFBbA^b_{FB} together with RbR_b. The two are of course correlated. We explore the possibilty that these and other effects are due to the mixing of bLb_L and bRb_R with one or more heavy quarks.Comment: 11 pages, 1 Figure, LaTex fil

    Chirality in Quantum Computation with Spin Cluster Qubits

    Full text link
    We study corrections to the Heisenberg interaction between several lateral, single-electron quantum dots. We show, using exact diagonalization, that three-body chiral terms couple triangular configurations to external sources of flux rather strongly. The chiral corrections impact single qubit encodings utilizing loops of three or more Heisenberg coupled quantum dots.Comment: 5 pages, 2 figure

    Three-electron anisotropic quantum dots in variable magnetic fields: exact results for excitation spectra, spin structures, and entanglement

    Full text link
    Exact-diagonalization calculations for N=3 electrons in anisotropic quantum dots, covering a broad range of confinement anisotropies and strength of inter-electron repulsion, are presented for zero and low magnetic fields. The excitation spectra are analyzed as a function of the strength of the magnetic field and for increasing quantum-dot anisotropy. Analysis of the intrinsic structure of the many-body wave functions through spin-resolved two-point correlations reveals that the electrons tend to localize forming Wigner molecules. For certain ranges of dot parameters (mainly at strong anisotropy), the Wigner molecules acquire a linear geometry, and the associated wave functions with a spin projection S_z=1/2 are similar to the representative class of strongly entangled states referred to as W-states. For other ranges of parameters (mainly at intermediate anisotropy), the Wigner molecules exhibit a more complex structure consisting of two mirror isosceles triangles. This latter structure can be viewed as an embryonic unit of a zig-zag Wigner crystal in quantum wires. The degree of entanglement in three-electron quantum dots can be quantified through the use of the von Neumann entropy.Comment: To appear in Physical Review B. REVTEX4. 13 pages with 16 color figures. To download a copy with higher-quality figures, go to publication #78 in http://www.prism.gatech.edu/~ph274cy
    corecore